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Introduction
MicroRNAs (miRs) are short regulatory RNA molecules that inhibit the translation of  target messenger 
RNAs (mRNAs) based on sequence complementarity. Biogenesis of  miRs involves transcription of  miR 
host genes, followed by a series of  posttranscriptional processing steps within the nucleus and cytoplasm 
that result in an approximately 22-nucleotide-long mature miR that is loaded into RNA-induced silencing 
complex (RISC) and capable of  target repression (1). Through interacting with multiple targets, miRs par-
ticipate in numerous cellular processes ranging from embryonic development and carcinogenesis to immu-
nity. miR-155 is a classic example of  a multifunctional miR that plays essential roles in hematopoietic 
development (2, 3), inflammatory responses (4–6), autoimmunity (7), and cancer progression (8, 9). In the 
context of  immunity, miR-155 is upregulated in T cells, B cells, macrophages, and dendritic cells (DCs) 
upon cellular activation and it contributes to effector responses by regulating target genes (10). Recent stud-
ies have shown that T cell–specific expression of  miR-155 is necessary for optimal antitumor immunity 
in various experimental models (11–14), but a detailed understanding of  how T cell–expressed miR-155 
impacts the tumor microenvironment (TME) is lacking. Further, the impact of  miR-155 on the prognosis 
of  human solid tumors remains to be elucidated.

The TME is composed of several different immune cell types with protumorigenic and antitumorigenic 
properties that play an active role in cancer development and progression. Understanding the dynamics of  
the TME is essential for devising effective new cancer therapeutics and predicting which patients are likely 
to respond to the immunotherapies (15). The advent of flow cytometry has enabled the characterization of  
cells infiltrating the tumor by using cell-specific antibodies, but it is unable to capture the true heterogeneity 

miR-155 has recently emerged as an important promoter of antitumor immunity through its 
functions in T lymphocytes. However, the impact of T cell–expressed miR-155 on immune cell 
dynamics in solid tumors remains unclear. In the present study, we used single-cell RNA sequencing 
to define the CD45+ immune cell populations at different time points within B16F10 murine 
melanoma tumors growing in either wild-type or miR-155 T cell conditional knockout (TCKO) mice. 
miR-155 was required for optimal T cell activation and reinforced the T cell response at the expense 
of infiltrating myeloid cells. Further, myeloid cells from tumors growing in TCKO mice were defined 
by an increase in wound healing genes and a decreased IFN-γ–response gene signature. Finally, we 
found that miR-155 expression predicted a favorable outcome in human melanoma patients and 
was associated with a strong immune signature. Moreover, gene expression analysis of The Cancer 
Genome Atlas (TCGA) data revealed that miR-155 expression also correlates with an immune-
enriched subtype in 29 other human solid tumors. Together, our study provides an unprecedented 
analysis of the cell types and gene expression signatures of immune cells within experimental 
melanoma tumors and elucidates the role of miR-155 in coordinating antitumor immune responses 
in mammalian tumors.
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of the TME and the activation states of infiltrating immune cells. Emerging single-cell RNA sequencing 
(SCseq) technologies provide a powerful alternative to investigate the characteristics of the TME and study 
antitumor immune responses at an unprecedented resolution. Recent studies have employed SCseq technol-
ogy to dissect the molecular features of the TME in both preclinical and clinical models and have unveiled 
the commonalities and context-dependent aspects of antitumor immunity (16, 17). Expanding the utilization 
of SCseq to new cancer models will be essential for obtaining a more complete understanding of how the 
immune system responds to developing tumors, with the eventual goal of revealing pathways that can be 
leveraged for therapeutic purposes.

In this study, we used SCseq to characterize the murine melanoma immune microenvironment in the 
presence or absence of  T cell–specific miR-155 at two different time points. In support of  our previous 
results (11), miR-155 was found to be essential for antitumor immune responses, as evidenced by faster 
tumor growth in T cell conditional miR-155–knockout mice (miR-155 TCKO). SCseq demonstrated a 
complex landscape of  tumor-infiltrating immune cells including multiple populations of  T cells, natural 
killer (NK) cells, neutrophils, DCs, and macrophages that were defined by distinct activation states in a 
time- and genotype-dependent manner. T cell–specific expression of  miR-155 was critical not only for T 
cell effector responses but also for programming several myeloid cell populations in the TME. Interest-
ingly, analysis of  The Cancer Genome Atlas (TCGA) data revealed that miR-155 expression correlates 
with an improved clinical outcome in human melanoma and defined an immune-enriched tumor sub-
type. Furthermore, miR-155 expression marked an immune-enriched solid tumor subpopulation across 
the TCGA solid cancer cohorts and positively correlated with multiple immune signature parameters. 
We also found that miR-155 expression was associated with an improved clinical outcome, especially 
in cancers with high mutational burden such as melanoma and lung cancer. Taken together, our results 
describe the critical role of  T cell–specific miR-155 in shaping the TME for effective antitumor immunity. 
These findings also delineate the characteristics and kinetics of  miR-155–mediated antitumor immunity 
in murine melanoma for the first time to our knowledge and suggest that an antitumor immune response 
can be defined by miR-155 expression in human cancers.

Results
SCseq reveals the immune cell diversity within the TME in melanoma. The TME is composed of  a variety of  
immune cells that can have both pro- and antitumorigenic functions. miR-155 was previously shown 
to be a critical mediator of  antitumor immunity in mice (11–14, 18), but the effects of  T cell–specific 
expression of  miR-155 on the dynamics of  the TME are unknown. To analyze the composition of  
the TME and the phenotypes of  tumor-infiltrating immune cells, we employed 10× Genomics SCseq 
technology. B16F10 murine melanoma cells expressing chicken ovalbumin (OVA) model antigen were 
injected subcutaneously into wild-type (WT) and miR-155 TCKO mice. Nine or 12 days after tumor 
injection, live CD45+ immune cells were sorted from the pooled tumors (n > 4 per time point) via 
flow cytometry and subjected to SCseq (Figure 1A and Supplemental Figure 1; supplemental materi-
al available online with this article; https://doi.org/10.1172/jci.insight.126543DS1). Consistent with 
our previous findings (11), we did not observe a major difference in tumor growth on day 9, whereas 
on day 12, miR-155 TCKO mice exhibited a higher tumor burden (Figure 1B). This suggested a lack of  
productive antitumor immunity in mice when T cell–specific expression of  miR-155 is lost. We aggre-
gated data from 11,054 individual cells [3,624 cells-WT(d9); 1,956 cells-miR-155 TCKO(d9); 1,759 
cells-WT(d12); and 3,715 cells-miR-155 TCKO(d12)] and performed unsupervised clustering analysis 
based on the similarity of  gene expression signatures by using the Seurat single-cell genomics R pack-
age (19). This analysis revealed 15 distinct cell clusters representative of  both lymphoid and myeloid 
lineages (Figure 1, C and D, and Supplemental Figure 2).

Due to the high dimensionality of the data and overlapping expression of marker genes, identifying 
the biological nature of cell clusters from SCseq experiments can be a challenging task (20). Surveying the 
expression of known markers can aid in the description of broad immune cell populations (Supplemental 
Figure 2), but a more granular analysis of cell clusters requires examining multiple genes simultaneously. 
To assist with the identification of cell clusters, we developed an algorithm that compares the gene expres-
sion signatures of SCseq cell clusters with the publicly available Immunological Genome Project (ImmGen) 
database (see Methods). The ImmGen database hosts microarray and RNA sequencing (RNAseq) data 
from more than 200 purified immune cell subsets under various experimental conditions. This algorithm 

https://doi.org/10.1172/jci.insight.126543
https://insight.jci.org/articles/view/126543#sd
https://doi.org/10.1172/jci.insight.126543DS1
https://insight.jci.org/articles/view/126543#sd
https://insight.jci.org/articles/view/126543#sd
https://insight.jci.org/articles/view/126543#sd


3insight.jci.org      https://doi.org/10.1172/jci.insight.126543

R E S E A R C H  A R T I C L E

https://doi.org/10.1172/jci.insight.126543


4insight.jci.org      https://doi.org/10.1172/jci.insight.126543

R E S E A R C H  A R T I C L E

calculates an aggregate identity score for each SCseq cell cluster as a measure of molecular similarity to the 
ImmGen subsets (Supplemental Figure 3). With this algorithm, certain cell clusters including plasmacytoid 
DCs (pDCs), activated and naive CD8+ T cells, NK cells, and Langerhans cells were confidently identified 
(Supplemental Figures 3 and 4). For cell clusters in which the algorithm could not make a clear call such 
as macrophage and neutrophil populations, we resorted to differential expression analysis between clusters 
to identify distinguishing markers. By combining these 2 approaches, among 15 distinct clusters in our data 
set, we identified 3 CD8+ T cell subsets (naive, activated, and activated cycling), 1 CD4+ T cell subset, 3 
neutrophil/granulocyte subsets (Ly6a+, Cxcl10+, and Arg1+), 2 macrophage subsets (F4/80– and F4/80+), 4 
DC subsets (Cd209+, Xcr1+, Langerhans, and plasmacytoid), and subsets of NK cells and monocytes (Fig-
ure 1C and Supplemental Figure 5). Differential expression analysis between clusters revealed distinct gene 
signatures in support of unique molecular characteristics of clusters (Figure 1D). Among these clusters, 
miR-155 host gene (Mir155hg) expression was detected in activated T cells, NK cells, and Langerhans DCs 
(Figure 1E).To verify the algorithm-assisted identification of cell clusters, we examined the expression of  
known cellular markers in our data set. As expected, the expression of these markers corresponded with 
the respective identities of clusters (Figure 1F). Not surprisingly, a considerable overlap was observed in the 
gene expression profiles of closely related cell clusters. These results underscore the need for a multidimen-
sional analytical approach to characterize cellular heterogeneity in the TME and suggest that lymphoid and 
myeloid cell subpopulations in the TME exhibit distinct molecular characteristics.

Upon confidently identifying cell clusters, we analyzed the differences between WT and miR-155 
TCKO tumor-infiltrating immune cells on days 9 and 12 after tumor injection. When the data from 2 
time points and genotypes were plotted side by side, time- and genotype-dependent dynamics within the 
TME started to emerge (Figure 1G). As early as day 9, the activated CD8+ T cell cluster was enriched in 
WT samples compared with miR-155 TCKO counterparts; however, on day 12, this difference was much 
more pronounced (Figure 1, G and H). At this later time point, the activated T cell cluster was present 
in miR-155 TCKO mice but was represented at a lower frequency (Figure 1G, gray arrows). A distinct 
population of  activated CD8+ cells characterized by the expression of  cell cycle genes (hence named 
“activated cycling CD8+ cluster”) was also enriched in WT mice on day 12. Interestingly, the activated 
cycling CD8+ T cell cluster was more pronounced in WT mice on day 12 compared with WT mice on 
day 9 (Figure 1G, red arrows). NK cells and the Xcr1+ DC subset were also enriched in WT samples on 
day 12, although they looked similar between WT and miR-155 TCKO samples on day 9 (Figure 1, G 
and H). In contrast, several myeloid populations were expanded in tumors grown in miR-155 TCKO 
mice by day 12. This was true for all 3 neutrophil subsets and monocytes in our data set (Figure 1, G and 
H). The levels of  F4/80+ macrophages and pDCs were also elevated, albeit to a lower extent, in miR-155 
TCKO tumors on day 12. Taken together, these data suggest that antitumor immune cells expand within 
the TME between days 9 and 12 of  tumor growth in WT mice, whereas in miR-155 TCKO mice, the 
TME shifts toward a protumorigenic state in the absence of  a productive T cell response.

T cell–intrinsic miR-155 is essential for antitumor immune activation. miR-155 was previously shown to 
be important for optimal T cell antitumor responses (6, 11, 12), but the molecular characteristics of  
miR-155–competent and –deficient T cell subsets in the TME have not been studied temporally. Next, 
we focused our analysis on infiltrating T cells to investigate the effects of  miR-155 loss on T cell acti-
vation phenotypes. To complement our findings at the cluster level, we first subsetted single-cell gene 
expression data based on concomitant expression of  CD3e and CD8a, as broad markers of  cytotoxic 

Figure 1. Single-cell RNA sequencing reveals cellular dynamics within the tumor immune microenvironment in the presence and absence of T cell–
specific miR-155. (A) Diagram showing the method employed for tumor-infiltrating immune cell single-cell RNA sequencing (SCseq). At the experimental 
endpoint, cells from 4 mice per group were combined and equal numbers were processed for 10× SCseq. (B) Tumor weights at the experimental endpoints 
of days 9 and 12, showing a higher tumor burden in miR-155 TCKO mice on day 12. Two-tailed t test was used for statistical comparisons. *P ≤ 0.05; ns, P > 
0.05. (C) T-distributed stochastic neighbor embedding (t-SNE) plots of SCseq data showing 15 distinct cell clusters (aggregate data from WT and miR-155 
TCKO samples from days 9 and 12). (D) Gene expression heatmap showing the top 10 differentially expressed genes in clusters. Columns indicate clusters 
and rows indicate genes. The column widths are proportional to the numbers of cells in clusters. Each vertical bar within the columns represents an 
individual cell. (E) Expression pattern of miR-155 host gene (Mir155hg) is shown. (F) Dot charts showing the expression of selected genes in cell clusters. 
The size of the dots represents the frequency of cells within the cluster expressing the gene of interest, while the color intensity indicates the level of 
expression. Dashed boxes indicate genes that are selectively expressed within clusters. (G) SCseq t-SNE plots showing the immune landscape in WT and 
miR-155 TCKO animals at 2 different time points. Activated CD8+ T cell (gray arrows), activated cycling CD8+ T cell (red arrows), naive CD8+ T cell (yellow 
arrowhead), pDC (dagger), Ly6a+ neutrophil (unfilled circle), Arg1+ neutrophil (filled circle), monocyte (unfilled square), and F4/80– macrophage (filled 
square) clusters are indicated. (H) Frequency of cell clusters in WT and miR-155 TCKO tumor microenvironment at days 9 and 12.
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T cells. As expected, the loss of  miR-155 resulted in lower frequencies of  intratumoral CD3+CD8+ 
T cells at both days 9 and 12 (Figure 2A). Interestingly, the overall frequency of  CD3+CD8+ cells 
increased in miR-155 TCKO mice from day 9 to day 12, but this increase was attenuated compared 
with the increase observed in WT mice. When we analyzed interferon-γ (Ifng) expression within these 
CD3+CD8+ cells, we observed an approximately 2-fold induction in WT mice from day 9 to day 12, 
while T cells from miR-155 TCKO mice lacked the ability to induce IFN-γ. We validated our findings 
from SCseq by using multicolor flow cytometry and observed lower percentages of  CD3+CD8+ T cells 
and a diminished production of  IFN-γ by these cells in tumors grown in miR-155 TCKO versus WT 
mice (Figure 2B). We then proceeded to analyze the expression levels of  known T cell activation 
markers and effector molecules within the CD3+CD8+ subset. CD44 and L-selectin (CD62L, encoded 
by the Sell gene) are 2 commonly used markers to distinguish activated (CD44hiCD62Llo) and naive 
(CD44loCD62Lhi) T cell subsets. Supporting our findings in cluster analysis, we observed higher levels 
of  CD44 and lower levels of  CD62L in WT CD3+CD8+ T cells, suggesting an activated phenotype 
(Figure 2C). Both at day 9 and day 12, we observed higher expression levels of  Ifng and granzyme B 
(Gzmb) in WT CD3+CD8+ T cells compared with miR-155 TCKO counterparts, on average (Figure 
2C). Both IFN-γ and Gzmb are critical mediators of  T cell cytotoxicity against tumors and pathogens 
(21). An elevated expression of  other activation marker genes such as Pdcd1 (encoding PD-1) and 
Tnfrsf9 (encoding 4-1BB) were observed in WT T cells, particularly by day 12 of  tumor progression. 
These findings suggest that the intratumoral T cell compartment in WT mice is composed of  more 
activated cells compared with miR-155 TCKO mice. In further support of  this interpretation, gene set 
enrichment analysis (GSEA) of  CD3+CD8+ intratumoral T cells from WT and miR-155 TCKO mice 
on day 12 revealed an enrichment for cellular proliferation and effector T cell gene expression signa-
tures for WT samples (Figure 2D). Further, when we limit the analysis to only the activated T cell clus-
ter (as identified in Figure 1), we observed higher expression frequency of  multiple activation marker 
genes including Ifng, GzmB, Pdcd1, and Cd27 (Figure 2E and Supplemental Figure 6). Taken together, 
these findings suggest that antitumor T cell responses evolve over time and cell-intrinsic expression of  
miR-155 is essential for T cells to infiltrate the tumor and reach an activated state.

Lastly, we wanted to examine the expression levels of  miR-155 targets at single-cell resolution. 
While the analysis of  miR targets via commonly used methods such as qPCR, bulk RNAseq, and 
Western blotting can provide an overall measure from a mixed cell population, delineating the effects 
of  miRs in individual cells and studying the heterogeneity of  cellular responses to miRs are not pos-
sible with these methods. For instance, upon experimental manipulation of  a miR, the target gene 
expression may be altered uniformly across the population to a certain extent, or it could be altered in 
a small subset of  cells to a much greater level resulting in the same overall observed changes. In this 
context, SCseq is a novel tool capable of  examining the expression of  miR targets at the individual 
cell level. Since miR-155 expression is induced in T cells upon activation and floxed miR-155 in our 
model is deleted only in T cells, we investigated the expression levels of  miR-155 targets only in acti-
vated T cell clusters within our data set. We found that these genes were not ubiquitously expressed 
and had variable expression across the data set. To address these issues and to show side-by-side 
results from WT and miR-155 samples with different numbers of  T cells, we scaled the frequency 
of  cells to the same relative abundance (the frequency of  cells not expressing a gene of  interest was 
normalized to 1, and the relative frequencies of  cells expressing the gene was calculated based on this 
normalized value). As expected, the relative number of  cells expressing the target genes was higher 
in miR-155 TCKO mice at both time points (Figure 2, F and G). Interestingly, the difference between 
WT and miR-155 TCKO T cells was consistent across the spectrum of  target gene expression, sug-
gesting a broad derepression of  miR-155 targets as opposed to high levels of  upregulation in a narrow 
subset of  T cells upon deletion of  miR-155. These results indicate that the expression of  miR-155 tar-
get genes is similarly affected across single T cell clones, supporting the idea that miR-155 expression 
uniformly modifies target genes within this T cell population in our experimental model.

T cell miR-155 controls the phenotype of  tumor-infiltrating myeloid cells. Upon activation, T cells produce 
several molecules that can interact with myeloid cells and regulate their function (22). Next, we proceed-
ed to analyze the myeloid cells in tumors grown in WT and miR-155 TCKO mice. We first examined 
the frequency of  cells expressing Itgam (encoding CD11b) and Adgre1 (encoding F4/80) markers as a 
measure of  macrophages in the TME. We did not observe obvious differences at day 9 between WT 
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Figure 2. T cell–intrinsic expression of miR-155 is necessary for optimal antitumor T cell activation. (A) Proportions of cells expressing T cell and activation 
markers in the SCseq data set (4 mice pooled per group). (B) Flow cytometric analysis of the B16F10-OVA tumor-infiltrating immune cells on day 12 showing 
elevated levels of CD8+ T cells in tumors of WT mice, and higher levels of IFN-γ production by these cells. Two-tailed t test was used for statistical compari-
sons. *P ≤ 0.05; ns, P > 0.05. (C) Expression levels of T cell activation markers and effector genes within the CD3+CD8+ cells are shown. Sell, Pdcd1, and Tnfrsf9 
encode CD62L, PD-1, and 4-1BB respectively. In these plots, each dot represents a single cell. Normalized expression values were used, and random noise was 
added to show the distribution of data points. The box plots show interquartile range and the median value (bold horizontal bar). Average expression value 
per sample is indicated by the red points. Wilcoxon’s test was used for statistical comparisons. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001; ns, P > 
0.05. (D) Gene set enrichment analysis (GSEA) of CD3+CD8+ cells in SCseq data on day 12. Normalized enrichment score (NES) and adjusted P value are shown. 
WT CD8+ T cells were enriched for cell cycle genes and genes upregulated in effector CD8+ T cells (gene sets were derived from MSigDB) (33). (E) Analysis of 
activation markers within activated CD8+ T cell cluster (as defined in Figure 1) showing a more robust activation phenotype in WT T cells. (F) Analysis of the 
miR-155 target gene expression in activated CD8+ T cell clusters on day 9. The x axis of the stacked histograms indicates the normalized expression values 
of target genes and the y axis indicates the scaled frequency of cells. To account for differences in cell numbers per sample, the frequency of cells with no 
expression of the indicated genes was scaled to 1. Dashed lines indicate the average expression values in each group. (G) Analysis of miR-155 targets in acti-
vated CD8+ T cell clusters on day 12. Data were scaled similarly to panel F.
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and miR-155 TCKO mice, but on day 12, miR-155 TCKO mice had more than 2-fold higher frequency 
of  macrophages compared with WT mice (Figure 3A). Interestingly, the levels of  intratumoral macro-
phages in WT mice decreased from day 9 to day 12. When we limit our analysis to CD11b+F4/80– cells 
as a surrogate for a general myeloid cell phenotype, we also observed a higher proportion in miR-155 
TCKO mice on day 12 (Figure 3A). Flow cytometric analysis of  tumor-infiltrating immune cells vali-
dated the observations of  SCseq and showed a higher frequency of  CD11b+F4/80+ macrophages and 
CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) in miR-155 TCKO mice on day 12 (Figure 3B). 
CD11b+F4/80+ macrophages in tumors grown in miR-155 TCKO mice expressed higher levels of  argi-
nase 1 (Arg1), TGF-β (TGFb1), and chitinase-like 3 (Chil3, also known as Ym1), which are commonly 
used markers to define the protumorigenic M2 state (Figure 3C). Changes in the expression levels of  
Arg1 and Chil3 were validated by qPCR (Supplemental Figure 7) (23). Principal component analysis 
(PCA) of  F4/80+ macrophage clusters (as defined in Figure 1) using consistently expressed immune-as-
sociated genes defined a distinct molecular phenotype for macrophages in miR-155 TCKO mice on day 
12, suggesting the myeloid compartment of  the TME undergoes phenotypic evolution over time (Fig-
ure 3D). When the global gene expression signatures of  CD11b+F4/80+ macrophages were examined, 
IFN-γ–response genes were found to be enriched in WT mice, whereas miR-155 TCKO macrophages 
were enriched for a wound-healing phenotype at both days 9 and 12 (Figure 3E and Supplemental Fig-
ure 8A). Interestingly, when CD11b+F4/80+ cells from WT mice were compared between the 2 time 
points, we observed a significant enrichment of  IFN-γ–response genes on day 12 (Supplemental Figure 
8B), supporting the interpretation that antitumor immune response is enhanced by day 12. Additionally, 
the enrichment of  an IFN-γ–response signature was evident in several other cell types in the WT tumor 
microenvironment by day 12 including neutrophils and various DC populations, suggesting IFN-γ secret-
ed by T cells interacts with multiple cell types in the TME (Supplemental Figure 9). Complementing 
our observations with CD11b+F4/80+ macrophages, we also found Arg1 and TGFb1 to be elevated in 
CD11b+F4/80– cells within the TME of  miR-155 TCKO mice (Figure 3F). Furthermore, IL4Ra, a mark-
er of  MDSCs in both mice and humans (24) was expressed at a higher frequency in CD11b+F4/80– cells 
of  these mice (Figure 3F), suggesting a greater portion of  CD11b+F4/80– cells develop into an MDSC-
like phenotype when miR-155 expression is lost in T cells. These findings demonstrate how tumor-infil-
trating immune cells in WT mice function together to mount a potent antitumor immune response by 
day 12 of  tumor growth, and show that the loss of  miR-155 in T cells reprograms the TME toward a 
protumorigenic state by affecting multiple myeloid cell subsets.

miR-155 expression defines an immune-enriched subtype of  human melanoma. In addition to their roles in 
immunity, miRs are known to be important determinants of  tumorigenesis (25). Specifically, miR-155 
was shown to have both protumorigenic (8, 26) and antitumorigenic properties (27, 28) depending on the 
tumor context in a tumor cell–intrinsic manner. Because miR-155 expressed in tumor cells or in infiltrating 
immune cells can exert different functions, roles of  miR-155 in determining tumor prognosis in human can-
cers remain to be elucidated. Following on our findings in murine B16 melanoma model, we first focused 
on miR sequencing (miRseq) data from human skin cutaneous melanoma (SKCM) in TCGA database to 
assess whether miR-155 expression correlated with survival outcome and clinical parameters. Expression 
levels of  mature miR-155 across the SKCM patient group were categorized at the top and bottom thirds 
and Kaplan-Meier survival curves were plotted from miR-155–high and miR-155–low groups, with 148 
patients each. Our analysis showed that higher expression of  miR-155 significantly marks a subpopula-
tion of  patients with a favorable clinical outcome in SKCM (Figure 4A). We then turned to RNAseq data 
from these patients to investigate the differential gene expression between miR-155–high and miR-155–
low groups. Several hundred genes were found to be differentially regulated in miR-155–high melanoma 
patients (1,784 genes were upregulated, and 206 genes were downregulated >2-fold, with adjusted P value 
of  < 0.05) (Figure 4B). The PTPRC gene encoding pan-leukocyte marker CD45 was found to be among 
significantly upregulated genes, suggesting an immune-enriched subtype in the miR-155–high cohort (Fig-
ure 4, B and C). Interestingly, several genes associated with T cells including T cell receptor complex signal 
transducers (LCK and LAT), coreceptors (CD4 and CD8A), and effector molecules (IFNG and GZMB) were 
also upregulated, suggesting the presence of  activated T cells in the TME (Figure 4B). The majority of  these 
genes exhibited more than 4-fold upregulation in miR-155–high tumors (Figure 4, B and C).

A landmark study published by TCGA consortium in 2015 described multiple molecular and clinical 
characteristics of  SKCM (29). In this study, the authors classified melanoma samples into 3 groups as 
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immune-rich, keratin-rich, and microphthalmia-associated transcription factor–low (MITF-low) subclasses 
depending on the expression of  immune- and tumor-specific markers (29). We next wanted to investigate 
the clinical classifications and immune-associated gene expression profiles of  miR-155–high and miR-
155–low tumor subgroups in SKCM. Interestingly, the miR-155–high subpopulation of  SKCM tumors 

Figure 3. T cell–specific expression of miR-155 regulates the myeloid populations within the tumor microenvironment. (A) The proportions of cells expressing 
Itgam and Adgre1, which encode myeloid/macrophage markers CD11b and F4/80, respectively. Graphs show an enrichment of macrophages (CD11b+F4/80+) and 
other myeloid-lineage cells (CD11b+F4/80–) in miR-155 TCKO mice on day 12. (B) Flow cytometric analysis of the tumor microenvironment shows a higher fre-
quency of CD11b+F4/80+ macrophages and CD11b+Ly6G+ myeloid-derived suppressor cells (MDSCs) in B16F10 tumors growing in miR-155 TCKO hosts. (C) Analysis 
of protumorigenic M2 macrophage marker genes in SCseq data. The box plots show the interquartile range and the median value (bold horizontal bar). Average 
expression value per sample is indicated by the red points. (D) Principal component analysis (PCA) of the F4/80+ macrophage cluster (as defined in Figure 1) 
using 142 consistently expressed immune-associated genes. Genes were selected based on “mouse immune process” GO annotation and by filtering out genes 
with average expression counts less than 1 per cell. F4/80+ macrophages in miR-155 TCKO mice on day 12 have a unique gene expression profile as evidenced 
by spatial separation in the PCA plot. (E) Analysis of gene set enrichment in CD11b+F4/80+ macrophages on day 12. Normalized enrichment score (NES) and 
adjusted P value are shown. WT macrophages were enriched for IFN-γ–response pathway genes, whereas macrophages from miR-155 TCKO mice upregulated 
genes related to wound healing pathways (gene sets derived from MSigDB) (33). (F) Expression levels of MDSC-associated genes within CD11b+F4/80– cells of 
the SCseq dataset, suggesting an MDSC-like phenotype for F4/80– myeloid cells in miR-155 TCKO mice. Graphs were prepared similarly to those in panel C. **P 
≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001; ns, P > 0.05 by Wilcoxon’s test.
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expressed higher levels of  several immune-related genes including general immune cell markers, costimu-
latory and coinhibitory receptors, and effector molecules (Figure 4D). Of note, mediators of  a protumori-
genic phenotype such as NOS2 and ARG1 (30) were expressed at slightly higher levels in the miR-155–low 
group. Strikingly, the miR-155–high subpopulation of  patients corresponded to an immune-rich melanoma 
subtype, as described in TCGA study (Figure 4D, green column annotations) (29). These findings were 
further supported by higher lymphocyte infiltration scores in miR-155–high tumors (Figure 4D, dark red 
column annotations), as described in TCGA study (29). Interestingly, when we examined the relationship 

Figure 4. miR-155 expression defines an immune-enriched phenotype in human cutaneous melanoma. (A) Kaplan-Meier survival curves showing an 
improved clinical outcome in miR-155–high subpopulation of skin cutaneous melanoma (SKCM) patients (red line). For this analysis, miRseq data from 
The Cancer Genome Atlas (TCGA) was categorized at the top and bottom thirds, resulting in 148 patients per group. P value of the log-rank test is shown in 
the graph. (B) Volcano plots showing differentially expressed genes in miR-155–high SKCM subpopulation. This plot was generated by analyzing RNAseq 
data from the same patients categorized in panel A. T cell–associated genes are indicated, showing a significant upregulation in the miR-155–high cohort. 
A linear fit model was used and the P values were corrected using the Benjamini-Hochberg method. (C) Comparison of the T cell–associated gene expres-
sion between miR-155–high and miR-155–low SKCM subpopulations. (D) Heatmap showing the correlation between miR-155 expression and SKCM clinical 
subtype and lymphocyte infiltration scores. Lymphocyte score and tumor subtype for SKCM were defined in a study from TCGA consortium (29). Several 
immune-related genes showed higher levels of expression in the miR-155–high SKCM subset. Hierarchical clustering was performed by using Euclidean 
distances and the ward.D2 algorithm. (E) Scatter plots showing the positive correlation between miR-155 host gene (MIR155HG) and immune-associated 
gene expression in TCGA-SKCM. Color gradient indicates the lymphocyte infiltration score of tumors, and the symbol shape indicates the molecular subtype 
of tumors (▲ immune, ■ keratin, + MITF-low, ● uncategorized). Student’s t test was used for the statistical analysis of the slope of regression line.
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between the expression levels of  miR-155 and various immune genes, we noted a strong and nearly linear 
positive correlation, suggesting the miR-155 expression continuum overlaps with the immune signature in 
the TME (Figure 4E and Supplemental Figure 10).

miR-155–high human melanoma tumors are highly infiltrated by lymphocytes. Upon observing a positive cor-
relation between miR-155 and immune gene expression, we next performed GSEA in the miR-155–high 
versus miR-155–low patient cohorts to characterize active signaling networks. In agreement with higher 
IFNG transcript levels, we observed an enrichment of  IFN-γ–response gene signature in miR-155–high 
tumors (Figure 5A). Furthermore, miR-155–high melanoma subset was significantly enriched for other 
inflammatory pathways including tumor necrosis factor α (TNFa), IFN-α (IFNa), and interleukin 2 (IL2) 
signaling (Supplemental Figure 11). In contrast, the miR-155–low melanoma subset was characterized by 
an enrichment in proliferative pathways, indicative of  a higher representation of  transcripts from tumoral 
origins in RNAseq data (Supplemental Figure 12). Of  note, the miR-155–low subset also exhibited an 
enrichment of  genes regulated by MYC, an oncogene that was shown to negatively regulate antitumor 
immune responses (Supplemental Figure 12) (31).

Understanding which cancer patients will respond to immunotherapy is an important clinical chal-
lenge. A recent study examined gene expression profiles of  TCGA tumors and defined an “immune 
signature (IS) score” that predicts responses to various forms of  immunotherapy (32). In this study, IS 

Figure 5. miR-155 expression is correlated with parameters associated with immunotherapy response. (A) GSEA plot showing enrichment of IFN-γ–
response gene signature in miR-155–high TCGA melanoma patients. Normalized enrichment score (NES) and adjusted P value are shown. (B) miR-155 
expression is strongly correlated with an immune signature (IS) score (Ock et al.; ref. 32) that predicts immunotherapy response. (C) Histological assess-
ment of 20 TCGA melanoma tumor samples with the highest and lowest miR-155 expression reveals a brisk lymphocyte infiltration in the miR-155-high 
subset. A (–) denotes tumor sections with no appreciable immune cell presence. A (+) indicates sections in which a non-brisk and localized lymphocyte 
infiltrate was observed. A (++) indicates sections with brisk and widespread lymphocyte infiltration were evident. Statistical comparison was performed 
by using χ2 test. ***P ≤ 0.001. (D) Representative H&E–stained tumor sections used for the quantification of lymphocyte infiltration in panel C. Five 
samples with the highest and 5 samples with the lowest miR-155 expression are shown. TCGA patient identifiers for these images are as follows (in 
descending order of miR-155 expression): TCGA-D9-A149-06A, TCGA-D3-A2JH-06A, TCGA-D3-A1QB-06A, TCGA-D3-A51F-06A, TCGA-D9-A6E9-06A, 
TCGA-EE-A3J8-06A, TCGA-YD-A89C-06A, TCGA-FS-A4F0-06A, TCGA-GN-A262-06A, and TCGA-WE-A8ZM-06A. Yellow arrowheads indicate lymphocyte 
infiltrates in the tumor. Images in D are from TCGA’s web interface (http://cancer.digitalslidearchive.net/).
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score was found to positively correlate with an IFN-γ–response gene signature and tumoral lymphocyte 
infiltration. Since miR-155 expression also marks an immune-rich subtype in human melanoma, we 
next wanted to determine the association between IS score and miR-155 expression levels. Our analysis 
revealed that miR-155 expression is strikingly correlated with IS score in human melanoma (Figure 5B). 
Importantly, when the 10 highest and 10 lowest miR-155–expressing TCGA melanoma samples were 
examined histologically, a brisk lymphocyte infiltration was evident in the miR-155–high subset (Figure 
5, C and D). Taken together, these findings further support the role of  miR-155 in defining an immune-
rich subtype in human melanoma and suggest that intratumoral expression of  miR-155 may have import-
ant clinical implications.

miR-155 expression positively correlates with immune enrichment in a variety of  distinct human solid tumors. 
TCGA database currently hosts data from 29 other solid tumor types originating in different tissues 
(https://cancergenome.nih.gov/). We first surveyed miR-155 expression in TCGA miRseq data sets and 
observed variable levels of  expression across different tumor cohorts, with SKCM having the highest 
median miR-155 levels (Figure 6A). We next wanted to investigate the impact of  miR-155 on global gene 
expression and clinical outcome in different TCGA cohorts. To this end, we categorized mature miR-
155 expression levels in each cancer type by dividing the patient cohort to the top and bottom thirds, as 
previously done for SKCM, and performed differential expression analysis by using publicly available 
RNAseq data. To examine the commonalities in differential gene expression among TCGA data sets, 
we calculated the frequency at which a gene is significantly upregulated in the miR-155–high subsets 
of  TCGA cohorts. In this analysis, if  a gene is found to be differentially expressed in the miR-155–high 
subsets of  all TCGA cancers analyzed, the frequency of  differential expression would be 100%, whereas 
if  a gene is significantly upregulated only in half  of  the TCGA cancers, the frequency would be 50%. By 
using this approach, we summarized the frequency of  differential upregulation for select immune genes 
in miR-155–high patient subsets (Figure 6B). As expected, expression of  miR-155 host gene (MIR155HG) 
was elevated in the patient subsets where the mature form of  miR-155 was higher (Figure 6B). Interest-
ingly, the PTPRC (CD45) gene was found to be upregulated in 96.6% (29 of  30) of  the miR-155–high 
TCGA tumor cohorts. Furthermore, genes encoding T cell signal transducers and coreceptors such as 
CD3E, LCK, and CD8A were all upregulated more than 90% of  the time within miR-155–high cancers 
across TCGA data set (Figure 6B and Supplemental Figure 12). Transcript levels of  T cell effector genes 
such as IFNG, GZMB, PRF1, and TNF were also elevated in at least 50% of  these tumors. Of  note, 
multiple other genes encoding canonical markers of  immune cell subsets such as KLRB1 (NK1-1; NK 
cells), ITGAM (CD11B; macrophages and granulocytes), ITGAX (CD11C; DCs), and ADGRE1 (F4/80; 
macrophages) were also upregulated in miR-155–high cancer subsets (Figure 6B). To examine function-
al pathways in these miR-155–high tumor subsets, we performed GSEA by using gene ontology (GO)  
and HALLMARK gene sets from the Molecular Signature Database (MSigDB) (33). High expression 
of  miR-155 correlated with a strong enrichment of  adaptive and innate immune pathways in all solid 
tumors analyzed regardless of  their origin (Figure 6C and Supplemental Figure 13). These observations 
demonstrate that miR-155 expression defines a multicellular immune-enriched phenotype in a wide vari-
ety of  human solid tumors.

To analyze the immune landscape from a multidimensional point of  view, we performed PCA with 
2,038 genes annotated with the Immune Process GO term by using RNAseq data from TCGA solid 
tumors. Even though the tumor RNAseq data in our analysis originated from several different tissue types, 
high miR-155 expression designated tumors with a common immune signature distinctly from miR-155–
low counterparts, as evidenced by the spatial separation of  data points in the PCA plot (Figure 6D). The 
same trend was observed when PCA was performed with 548 immune-associated genes downloaded from 
the ImmPort database (Supplemental Figure 14, A and B) (34). Not surprisingly, when all the genes in the 
RNAseq data set were used in PCA, high miR-155 expression did not define a distinct tumor population 
(Figure 6E), suggesting that miR-155 expression correlates with a consistent immune gene signature rather 
than describing a difference in global gene expression patterns in human solid tumors. Surprisingly, the 
level of  miR-155 expression was found to correlate positively with the IS score (reported by Ock et al., ref. 
32) across TCGA solid tumors, mirroring our findings in melanoma (Supplemental Figure 15), further 
supporting the role of  miR-155 in defining a common immune involvement in human cancer.

Lastly, we wanted to investigate the relationship between miR-155 expression in the TME and 
the survival outcome in human cancers. A univariate Cox proportional hazards model was used to 
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Figure 6. miR-155 positively correlates with immune infiltration in human solid tumors. (A) Mature miR-155 transcript reads per million in the log 
scale were plotted across TCGA cohorts. (B) Summary of differential upregulation of immune-associated genes in miR-155–high tumor subsets. The 
frequency at which the genes were found to be upregulated across TCGA tumors is plotted. (C) Summary of top GSEA results from miR-155–high sub-
sets of TCGA tumors. Color scale indicates the cumulative normalized enrichment score (NES) across 30 TCGA cohorts. (D) PCA of immune-associated 
gene expression using miR-155–high versus miR-155–low subsets of TCGA tumors. Data from 30 different TCGA cohorts were aggregated, resulting 
in 6,414 patients (3,201 belonging to miR-155–high subset and 3,213 belonging to miR-155–low subset). A total of 2,038 genes with human “immune 
process” GO annotation were used for this analysis. Separation of red and blue points indicates that miR-155–high tumors have a shared immune-re-
lated gene expression profile that is distinct from miR-155–low tumors across TCGA data sets. (E) PCA of TCGA tumor samples by using all shared 
genes in RNAseq data sets (15,151 genes analyzed). (F) Scatter plot showing an inverse correlation between the univariate Cox proportional hazard ratio 
(HR) of miR-155 and the average levels of miR-155 expression in TCGA tumors. Dashed line denotes HR of 1, which indicates no effect on survival. Red 
color gradient indicates the median genomic mutational burden in these tumors. High mutational burden was found to be loosely associated with a 
lower HR (i.e., improved clinical outcome). BLCA, bladder urothelial carcinoma; LGG, brain lower grade glioma; BRCA, breast invasive carcinoma; CESC, 
cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; HNSC, head and neck 
squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, 
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; READ, rectal 
adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; UCEC, uterine corpus endometrial carcinoma.
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investigate the correlation between miR-155 expression and patient survival data for each TCGA 
solid tumor cohort. For this analysis, we excluded TCGA tumor types (i) that consisted of  fewer 
than 100 patients or (ii) tumors in which a consistent, time-dependent decline in patient survival was 
lacking (see Figure 6F and Supplemental Figure 16 for the tumor cohorts included in the analysis). 
Results of  the survival analysis revealed that, although miR-155 expression had a variable rela-
tionship with survival depending on the tumor context, it was inversely correlated with the hazard 
ratio (HR) from the Cox survival model (Figure 6F and Supplemental Table 1). In these analyses, 
an HR larger than 1 indicates a poorer survival (i.e., increased hazard), while an HR smaller than 
1 indicates an improved survival (i.e., decreased hazard or protection). SKCM had an HR value of  
0.84, corresponding to a 16% decrease in clinical hazard in the miR-155–high patient subset (Figure 
6F). Interestingly, when the mutational burden of  these TCGA tumors was analyzed, we observed 
that cancers in which miR-155 correlated with a more favorable clinical outcome (HR < 1) tended 
to have a higher mutational load (Figure 6F, red-colored data points). Among the TCGA cohorts, 
SKCM exhibited the highest mutational burden, followed by lung squamous cell carcinoma (LUSC), 
where, in both cases, miR-155 expression correlated with an improved prognosis. In summary, miR-
155 expression defines an immune-enriched subtype of  human cancers and may have an impact on 
the tumor prognosis, although the ultimate survival outcome is determined by the contribution of  
other tumor-specific factors such as mutational burden and the composition of  the TME.

Discussion
In this study, we described the molecular characteristics of  antitumor immune responses mediated by 
T cell–specific miR-155 at a cellular resolution via SCseq technology. Our analysis at 2 different time 
points revealed distinct activation states of  tumor-infiltrating immune cells and delineated the dynamic 
interactions of  these cells within the TME. Supporting the previous literature, loss of  miR-155 in T 
cells was detrimental to antitumor T cell responses (11, 12). Importantly, T cell–specific expression of  
miR-155 was also critical for shaping the intratumoral myeloid immune compartment both in terms of  
cellular composition and activation states. Although miR-155’s role in antitumor immunity was evident 
early during tumor development (day 9), its importance was more pronounced at a later time point (day 
12), suggesting a continued evolution of  antitumor immune responses. Analysis of  TCGA data from 
human melanoma revealed that miR-155 expression correlates with an immune-enriched subtype and is 
associated with an improved clinical outcome (29). Furthermore, analysis of  TCGA data revealed that 
miR-155 expression marked an immune-enriched phenotype in 29 other solid tumor types. Although 
miR-155 expression did not always correlate with an improved clinical outcome in TCGA tumors, the 
overall expression level of  miR-155 was found to have an inverse relationship with the clinical HR in a 
univariate survival analysis. These findings corroborate the roles of  miR-155 in promoting antitumor 
immunity and suggest that miR-155 can be a marker of  immune enrichment in human cancers.

miR-155 is extensively studied in the contexts of  inflammation and carcinogenesis. While miR-155 
expression is induced in immune cells upon stimulation (4, 7), cancer cells of  various origins frequently 
overexpress miR-155 (35). Tumor-intrinsic miR-155 was shown to have both tumor-promoting (3, 8, 26) 
and tumor-suppressing functions (9, 27). Although miR-155 largely contributes to inflammatory respons-
es in a variety of  immune cell types (4, 7, 13, 18, 36, 37), it can also promote the function of  regulatory T 
cells, which are important negative regulators of  the immune response (38). Therefore, miR-155 expres-
sion within the TME can have variable effects on cancer prognosis depending on which cells express 
miR-155. Our findings here, however, suggest that higher expression of  miR-155 in the tumors correlate 
with an improved survival in human cancer patients. Against the backdrop of  renewed interest in miR 
therapeutics, characterization of  miR-155–expressing cells within the TME is critical to reveal which 
populations are dominant and can be targeted for therapeutic purposes.

Previous studies reported that miR-155 is induced in T cells upon activation (7, 12, 36). In support 
of  these observations, SCseq data in this study revealed significant levels of  Mir155hg expression in acti-
vated CD8+ T cell clusters, which constitute greater than 30% of  the tumor-infiltrating immune cells in 
WT hosts by the 12th day of  tumor growth. Deletion of  miR-155 specifically in T cells resulted in lower 
levels of  activated T cells and higher levels of  myeloid cells in the TME, indicating an inverse relationship 
between tumor-infiltrating T cells and myeloid cell subsets. Interestingly, when the gene expression land-
scape of  human tumors is examined, both T and myeloid cell–specific genes were frequently coexpressed 
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within the miR-155–high tumor subsets, suggesting a broad infiltration of  multiple immune cell types. 
This may be explained by induction and activity of  miR-155 in multiple cell types in the TME. Indeed, 
miR-155 can be expressed in a variety of  immune cells other than activated T cells including macrophages, 
DCs, NK cells, and B cells (4, 37, 39). Interestingly, miR-155 was shown to convert immunosuppressive 
tumor-associated DCs to an immunostimulatory phenotype in an ovarian cancer model, suggesting the 
miR-155 axis can be functional in other immune cells in the TME (40). Albeit in smaller proportions, 
we detected Mir155hg expression in NK cells and subsets of  DCs and macrophages in support of  these 
previous findings. However, due to low sequencing coverage of  SCseq, other cells expressing Mir155hg 
at low levels may be present in our data set but remain under the detection limit. Similarly, we were 
unable detect appreciable levels of  Ly6G expression in myeloid populations, a marker commonly used in 
conjunction with CD11b to define MDSCs, although B16 tumors were shown to be rich in MDSCs (41). 
Immunomodulatory markers commonly observed in MDSCs were expressed in a considerable portion 
of  CD11b+F4/80– myeloid cells in our data set, which is consistent with the presence of  MDSCs in the 
murine melanoma TME. These findings suggest that a deeper sequencing coverage may be needed to 
detect genes with low transcript counts in SCseq experiments and underscore the importance of  analyzing 
multiple parameters to define the identity and activation state of  cells in the TME.

SCseq technology is increasingly utilized in tumor immunity studies and provides an unprecedent-
ed insight into the dynamics of  tumor-infiltrating immune cells. By identifying several distinct myeloid 
and lymphoid cell clusters, our study demonstrates the distinct activation states of  immune cells in the 
murine melanoma TME. Most of  the closely related clusters identified by SCseq through multidimension-
al analysis of  gene expression would have otherwise been characterized as the same cell type via routine 
immunophenotyping methods such as flow cytometry. This emphasizes the importance of  high-throughput 
analyses for the characterization of  the cellular heterogeneity within the TME. SCseq in this study also 
enabled us to assess the expression levels of  miR-155 targets in individual cells and describe the genes that 
are consistently derepressed in activated T cells upon loss of  miR-155 at different time points. Therefore, 
our data set can serve as a resource to survey known and novel miR-155 targets in the context of  an evolv-
ing antitumor immune response. In addition to describing an inept T cell phenotype, our study revealed 
increased levels of  pDCs, and multiple subsets of  neutrophils and macrophages in miR-155 TCKO mice. 
These cell types were suggested to promote tumor immunoevasion in various experimental settings (42, 43) 
and will be further investigated in the context of  miR-155–dependent antitumor immunity.

Our findings suggest that miR-155 expression may be a general marker of  immune infiltration in 
human cancer. However, since miR-155 can be expressed by both tumor cells and immune cells in 
the TME, elucidating the cellular origins of  the miR-155 transcript in bulk RNAseq is challenging. 
Deconvolution approaches that aim to distinguish gene signatures of  cancer and immune cells in 
RNAseq data can potentially be employed to address this issue and reveal detailed immunobiological 
characteristics of  miR-155–high and –low tumors (44, 45). Our data showing a strong positive cor-
relation between the expression levels of  miR-155 and various immune-associated genes suggest that 
the miR-155 transcript in bulk tumor RNAseq originates from the immune component. This is further 
supported by the results of  PCA that revealed a consistent immune gene signature within miR-155–
high tumor subsets, and by the results of  GSEA, which showed a significant enrichment of  several 
inflammatory pathways upon high expression of  miR-155. Moreover, miR-155–high tumor subsets 
were characterized by a more predominant immune cell infiltration at the histological level in SKCM. 
Observing similar trends in both molecular and histological analyses of  miR-155–high tumor subsets 
is intriguing because, while gene expression profiling requires extraction of  RNA from a considerably 
sized tumor tissue, a histological preparation only samples a few micrometers of  the tumor. Despite 
the caveat of  subsampling, histological assessment of  immune infiltration is a common clinical prac-
tice in human melanoma where studies have revealed a positive correlation between intratumoral 
lymphocyte levels and the clinical prognosis (46). Our findings suggest that the enhanced immune 
signature marked by higher expression of  miR-155 did not always correlate with an improved clin-
ical outcome across TCGA data sets, suggesting that tumor-specific features can play an important 
role in shaping the antitumor immune response and tumor prognosis. Two tumor types from TCGA 
data set in which miR-155 expression was associated with a better clinical outcome were SKCM 
and LUSC, which are characterized by the highest mutational burden among TCGA cohorts. High 
genomic instability and mutational burden are thought to generate neoantigens and contribute to 
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tumor immunogenicity (47). Supporting this notion and findings of  this study, previous multivariate 
analyses of  TCGA data revealed that tumor mutational burden correlated with immune infiltration 
overall, but the clinical outcome was determined by the contribution of  other factors including the 
nature of  tumor antigens, and the characteristics of  the immune pathways involved (48, 49).

The central tenet of  cancer immunotherapy is not only enhancing immune cell infiltration of  tumors 
but also reprogramming the intratumoral immune landscape for effective tumor killing. By marking 
an immune-enriched subtype in human cancer, miR-155 expression may identify patients who are 
likely to benefit from immunotherapies that reprogram the TME for tumor elimination. Indeed, miR-
155 expression within TCGA tumors exhibited a remarkable correlation with a previously calculated 
immune score that strongly predicts clinical responses to immunotherapy (32). In support of  miR-155’s 
role in immunotherapeutic responses, our findings in preclinical cancer models revealed that, although 
the effects of  miR-155 loss were largely rescued by immune checkpoint blockade therapy, the optimal 
responses to immunotherapy required a functional miR-155 axis (11). Therefore, by characterizing the 
dynamics of  miR-155–mediated antitumor immunity and by identifying correlations between miR-155 
expression and clinical parameters in human solid cancers, our study opens a new avenue for the pursuit 
of  miR-155–targeting therapeutics and immunotherapy.

Methods

Mice
miR-155–floxed mice were described previously (5). To achieve T cell–specific knockout of  miR-155, 
floxed animals were crossed with CD4-Cre mice on the same genetic background. Due to the CD4/
CD8 double-positive phase in thymic T cell development, Cre-mediated excision of  floxed miR-155 
occurs in both helper and cytotoxic T cell subsets (50). As miR-155 WT controls, mice containing a 
floxed miR-155 cassette, but lacking the Cre recombinase were used. Five to 10 mice per group were 
used in the experiments, which were repeated at least 2 times.

Cell culture and tumor experiments
B16F10 murine melanoma cells (ATCC, CRL-7475) or B16F10-OVA cells expressing chicken OVA mod-
el antigen were used in the tumor experiments (11). Cells were cultured in DMEM supplemented with 
10% fetal bovine serum, penicillin-streptomycin, and L-glutamine. B16F10-OVA cells were provided by 
Mingnan Chen (University of  Utah). To derive B16F10-OVA cells, parental B16F10 cells were transfect-
ed with an OVA-expressing plasmid and selected in media containing 0.1 mg/ml G418. Cells were pas-
saged at least once prior to injection and were 80%–90% confluent on the day of  injection. Adherent cells 
were trypsinized and washed 3 times in PBS and adjusted to 1 × 106 cells per 100 μl injection volume in 
PBS. Cells were injected into shaved flanks of  mice under isoflurane anesthesia. Tumor growth was mon-
itored throughout the experimental duration of  9–12 days. At the experimental endpoints of  days 9 and 
12 following tumor injection, tumors were collected for flow cytometric analysis and SCseq, respectively.

SCseq and analysis
Sample preparation and sequencing. Tumor tissues were dissociated using scissors and forceps and incu-
bated in 5 ml Accumax (Innovative Cell Technologies) with constant agitation at room temperature 
for 30 minutes. Tumors from at least 4 mice were pooled together per group. After this enzymatic 
digestion, cells were stained with DAPI and APC-conjugated CD45 for 15 minutes on ice in PBS con-
taining 2 mM EDTA and 0.5% BSA. Live CD45+ cells were sorted via BD FACSAria cell sorter and 
washed once in PBS containing 0.04% BSA. Samples were then processed for SCseq via a 10× plat-
form according to the manufacturer’s instructions (10× Genomics). Paired-end RNAseq (125 cycles) 
was performed via an Agilent HiSeq next-generation sequencer. Sequencing reads were processed 
by using 10× Genomics CellRanger pipeline and further analyzed with the Seurat R package. The 
effect of  mitochondrial gene representation and the variance of  unique molecular identifier (UMI) 
counts were regressed out from the data set prior to analysis. Gene expression signatures defining cell 
clusters were analyzed after aggregating 4 samples (WT and miR-155 TCKO, days 9 and 12). The raw 
data from SCseq experiments in this manuscript can be found in the NCBI’s Gene Expression Omni-
bus database (GEO GSE121478).

https://doi.org/10.1172/jci.insight.126543


1 6insight.jci.org      https://doi.org/10.1172/jci.insight.126543

R E S E A R C H  A R T I C L E

Identification of cell clusters
Cells in our data set were clustered by using the FindClusters function of  the Seurat analysis package, 
which identifies clusters via a shared nearest neighbor (SNN) modularity optimization–based algorithm. 
This function identified 14 distinct clusters spanning the lymphoid and myeloid cell lineages. We noted 
that CD4+ T cells were clustered with a larger cell cluster composed mainly of  CD8+ T cells. To increase 
the granularity of  our analysis, we manually separated this cluster and named it accordingly, resulting in 
the 15 clusters analyzed throughout the manuscript. The biological identities of  cell clusters were anno-
tated with the help of  an immune-cell scoring algorithm (developed in house and available at http://labs.
path.utah.edu/oconnell/resources.htm) and by surveying known immune cell markers in the SCseq data 
set. The immune-scoring algorithm compares the gene signatures of  the cell clusters in this study with the 
publicly available microarray data hosted in the Immunological Genome Project Database (ImmGen). By 
using differentially expressed gene signatures from Seurat, the immune-scoring algorithm performs the 
following steps: (a) for each ImmGen cell population, and for each gene found in ImmGen microarrays, it 
calculates the ratio of  normalized microarray signal to the average signal value of  the gene from the whole 
ImmGen data; (b) applies natural log transformation to the ratio, resulting in positive numbers for upreg-
ulated genes and negative numbers for downregulated genes in ImmGen data sets; (c) multiplies ImmGen 
log-ratio values with the log-ratio of  matching genes that are differentially expressed in each cell cluster in 
the SCseq dataset; and (d) sums up scores from all the genes to yield an aggregate identity score for each 
ImmGen cell type for a given SCseq cluster. In this approach, genes that are differentially upregulated or 
downregulated in both ImmGen and SCseq data sets contribute to the immune identity score more heavily 
(a positive number is obtained when 2 log-ratio values with the same sign are multiplied). In contrast, if  a 
gene is inversely regulated in ImmGen and SCseq clusters, the immune identity score is reduced. Through 
this method, the correlation between the gene expression signatures of  SCseq cell clusters in our study and 
ImmGen data subsets assists in determining the cluster identities. In cases where this algorithm is unable 
to make a clear call (as in myeloid cell subsets), we surveyed the expression of  known genes in the data set 
and performed differential expression analyses between closely related cell clusters. This approach allowed 
us to further differentiate subsets of  neutrophils, macrophages, and T cell clusters. Upon naming the clus-
ters, the Seurat R package was used to create plots for the expression of  selected genes. GSEA analysis was 
performed by using fgsea R package (51), after ranking genes using a signal-to-noise metric (52).

Flow cytometry
For the staining of  tumor-infiltrating immune cells, tumor tissue was mechanically disrupted and incubated 
for 30 minutes at room temperature in 5 ml Accumax (Innovative Cell Technologies). Following incuba-
tion, cells were filtered through a 0.45-μm nylon filter to obtain single-cell suspensions. Cells were stained in 
Hank’s balanced salt solution (HBSS) supplemented with 0.5% BSA and 2 mM EDTA by using the follow-
ing fluorophore-conjugated antibodies (purchased from Biolegend or eBioscience/ThermoFisher Scientif-
ic): anti-CD3e (clone 145-2C11) (Pacific Blue), anti-CD8a (clone 53-6.7) (APC), anti-CD45 (clone 30-F11) 
(PE-Cy7), anti-Gr1 (clone RB6-8C5) (PE), anti-CD11b (clone M1/70) (PerCp-Cy5.5), and anti-F4/80 
(clone BM8) (PE) at 1:500 to 1:1,000 dilutions. After staining cell surface antigens on ice for 15 minutes, 
cells were washed and analyzed using a BD LSRFortessa flow cytometer. Data analysis was done using 
FlowJo (Tree Star) and GraphPad Prism software.

Analysis of TCGA data
Categorization of  miR-155 expression and survival analysis. Publicly available TCGA data were downloaded 
using TCGABiolinks and RTCGA R packages (53, 54). Reads-per-million miR counts from miRseq experi-
ments were used for the categorization of miR-155 expression levels in cancer patients. Glioblastoma tumors 
(TCGA-GBM) were excluded from analysis due to the lack of miRseq. In the remaining solid tumor cohorts, 
data only from primary tumors were considered for all tumor types except cutaneous melanoma (TCGA-SK-
CM). For SKCM, both metastatic and primary tumor samples were analyzed because the majority of the 
samples were derived from metastatic tumors. In rare cases where both primary and metastatic tumor data 
are available from the same patient, only the primary tumor data were included in the analyses. For each 
type of tumor, hsa-mir-155 expression was categorized at the top- and bottom-third quantiles (67th and 33rd 
percentile), and patient subpopulations were designated as miR-155–high and miR-155–low based on these 
cutoffs. Survival analysis was performed by using survival and survminer R packages. Survival outcome in 
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miR-155–high versus miR-155–low patient subpopulations was examined by using Kaplan-Meier, log-likeli-
hood statistics, and the univariate Cox proportional hazards model. For this analysis, tumor cohorts with at 
least 100 patients that exhibit a gradual time-dependent decline in survival were included.

RNAseq differential expression analysis. Raw count data from miR-155–high and miR-155–low patient 
subpopulations were downloaded by using the TCGABiolinks R package. For differential expression 
analysis, the limma R package was used, which tests differential gene expression between samples by 
using a linear model (55). RNAseq data were normalized via voom transformation as part of  this pack-
age for each tumor type separately after removing genes expressed at low levels. Differentially expressed 
genes were visualized in volcano and bar plots.

GSEA
Voom-transformed RNAseq expression values from miR-155–high and miR-155–low patient subpopula-
tions were ranked by using a signal-to-noise metric (52). Ranked gene lists were then analyzed for gene 
set enrichment by using the fgsea R package (51). Gene sets used in these analyses were derived from the 
Molecular Signature Database (MSigDB) (33) and previously published manuscripts that investigated 
immune signatures in various tumor contexts.

PCA
PCA was used to investigate the relationship between miR-155–high and miR-155–low patient subpopu-
lations of  TCGA data set. After limiting the analysis to the shared genes between tumor types, either the 
whole expression data set or only the immune-related genes were used for PCA. For these analyses, lists 
containing approximately 1,000 immune-specific genes were downloaded from the ImmPort database 
(34) or from the GO browser.

Tumor histology and the assessment of immune infiltration
miRseq data from TCGA database were analyzed and the 10 highest and 10 lowest miR-155–express-
ing tumors were selected for histological examination in each solid tumor cohort. H&E–stained frozen 
tumor sections were assessed for immune infiltration by using TCGA data repository web interface 
(https://portal.gdc.cancer.gov/repository). For this analysis, biospecimen IDs were randomized and 
provided to a board-certified anatomic pathologist (AHG), who was blinded to the miR-155 expression 
levels. Tumor sections devoid of  immune cells were scored with (–). Tumors were scored (+) if  a non-
brisk localized lymphocyte infiltrate was observed. A (++) score was given if  a brisk and widespread 
lymphocyte infiltration was present across the tumor tissue.

Statistics
Assessments of  tumor growth and flow cytometry data were performed using 2-tailed Student’s t tests. 
Wilcoxon’s test was used for analyzing gene expression in select SCseq clusters. Reported P values were 
corrected for multiple comparisons by the Holm-Sidak method. P values less than or equal to 0.05 were 
considered statistically significant throughout (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001).  
P values from the log-rank test are reported in SKCM survival graphs. In TCGA differential expression 
analyses, Benjamini-Hochberg–corrected P values calculated by limma R package are plotted.
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Author contributions
TBH and HAE coordinated and performed the experiments, analyzed the data, and prepared the figures. 
HAE wrote the manuscript and developed the immune cell scoring algorithm. HAE and AHG scored 
lymphocyte infiltration in TCGA melanoma samples. MAW, JLR, and WZS advised on experiments. 
RMO designed the research, advised on experiments, and edited the manuscript.

https://doi.org/10.1172/jci.insight.126543
https://portal.gdc.cancer.gov/repository


1 8insight.jci.org      https://doi.org/10.1172/jci.insight.126543

R E S E A R C H  A R T I C L E

Acknowledgments
This work was supported in part by NIH grants R01-AG047956 and R01-AI123106. TBH was supported 
by the NIH grant F30CA189731. We thank the University of  Utah Flow Cytometry, High-Throughput 
Genomics, and Bioinformatics Core Facilities. We are grateful to Chris Conley and Chris Stubben at the 
Huntsman Cancer Institute Bioinformatics Core for invaluable discussions and their assistance in imple-
menting computational analysis pipelines used in this manuscript. We also acknowledge Mingnan Chen 
(University of  Utah) for providing B16F10-OVA cells. We are thankful to the authors of  the Seurat Single 
Cell Genomics analysis package that facilitated the analysis of  our single-cell sequencing data (Rahul 
Satija Lab, New York University).

Address correspondence to: Ryan M. O’Connell, 15 N. Medical Drive East, JMRB, Salt Lake City, Utah, 
84112, USA. Phone: 801.213.4153; Email: ryan.oconnell@path.utah.edu.

	 1.	Ha M, Kim VN. Regulation of  microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–524.
	 2.	Georgantas RW, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of  

differentiation control. Proc Natl Acad Sci USA. 2007;104(8):2750–2755.
	 3.	O’Connell RM, et al. Sustained expression of  microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. 

J Exp Med. 2008;205(3):585–594.
	 4.	O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflam-

matory response. Proc Natl Acad Sci USA. 2007;104(5):1604–1609.
	 5.	Hu R, et al. miR-155 promotes T follicular helper cell accumulation during chronic, low-grade inflammation. Immunity. 

2014;41(4):605–619.
	 6.	Gracias DT, et al. The microRNA miR-155 controls CD8(+) T cell responses by regulating interferon signaling. Nat Immunol. 

2013;14(6):593–602.
	 7.	Hu R, et al. MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression. J Immunol. 

2013;190(12):5972–5980.
	 8.	Jiang S, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of  cytokine signaling 1 

gene. Cancer Res. 2010;70(8):3119–3127.
	 9.	Li CL, et al. microRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncol Rep. 

2012;27(6):1960–1966.
	10.	Hsin JP, Lu Y, Loeb GB, Leslie CS, Rudensky AY. The effect of  cellular context on miR-155-mediated gene regulation in four 

major immune cell types. Nat Immunol. 2018;19(10):1137–1145.
	11.	Huffaker TB, et al. Antitumor immunity is defective in T cell-specific microRNA-155-deficient mice and is rescued by 

immune checkpoint blockade. J Biol Chem. 2017;292(45):18530–18541.
	12.	Huffaker TB, et al. Epistasis between microRNAs 155 and 146a during T cell-mediated antitumor immunity. Cell Rep. 

2012;2(6):1697–1709.
	13.	Ji Y, et al. miR-155 augments CD8+ T-cell antitumor activity in lymphoreplete hosts by enhancing responsiveness to homeo-

static γc cytokines. Proc Natl Acad Sci USA. 2015;112(2):476–481.
	14.	Dudda JC, et al. MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity. 

2013;38(4):742–753.
	15.	Binnewies M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 

2018;24(5):541–550.
	16.	Azizi E, et al. Single-cell map of  diverse immune phenotypes in the breast tumor microenvironment. Cell. 

2018;174(5):1293–1308.e36.
	17.	Tirosh I, et al. Dissecting the multicellular ecosystem of  metastatic melanoma by single-cell RNA-seq. Science. 

2016;352(6282):189–196.
	18.	Zonari E, et al. A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses 

in mice. Blood. 2013;122(2):243–252.
	19.	Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, 

technologies, and species. Nat Biotechnol. 2018;36(5):411–420.
	20.	Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Aspects Med. 2018;59:114–122.
	21.	Halle S, Halle O, Förster R. Mechanisms and dynamics of  T cell-mediated cytotoxicity in vivo. Trends Immunol. 

2017;38(6):432–443.
	22.	DeNardo DG, Andreu P, Coussens LM. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor 

immunity. Cancer Metastasis Rev. 2010;29(2):309–316.
	23.	Sica A, et al. Macrophage polarization in tumour progression. Semin Cancer Biol. 2008;18(5):349–355.
	24.	Mandruzzato S, et al. IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol. 

2009;182(10):6562–6568.
	25.	Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of  microRNAs in cancer. Cancer Res. 

2016;76(13):3666–3670.
	26.	Kong W, et al. Upregulation of  miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor 

prognosis and triple-negative breast cancer. Oncogene. 2014;33(6):679–689.
	27.	Levati L, et al. MicroRNA-155 targets the SKI gene in human melanoma cell lines. Pigment Cell Melanoma Res. 

https://doi.org/10.1172/jci.insight.126543
mailto://ryan.oconnell@path.utah.edu
https://doi.org/10.1038/nrm3838
https://doi.org/10.1073/pnas.0610983104
https://doi.org/10.1073/pnas.0610983104
https://doi.org/10.1084/jem.20072108
https://doi.org/10.1084/jem.20072108
https://doi.org/10.1073/pnas.0610731104
https://doi.org/10.1073/pnas.0610731104
https://doi.org/10.1016/j.immuni.2014.09.015
https://doi.org/10.1016/j.immuni.2014.09.015
https://doi.org/10.1038/ni.2576
https://doi.org/10.1038/ni.2576
https://doi.org/10.4049/jimmunol.1300351
https://doi.org/10.4049/jimmunol.1300351
https://doi.org/10.1158/0008-5472.CAN-09-4250
https://doi.org/10.1158/0008-5472.CAN-09-4250
https://doi.org/10.1038/s41590-018-0208-x
https://doi.org/10.1038/s41590-018-0208-x
https://doi.org/10.1074/jbc.M117.808121
https://doi.org/10.1074/jbc.M117.808121
https://doi.org/10.1016/j.celrep.2012.10.025
https://doi.org/10.1016/j.celrep.2012.10.025
https://doi.org/10.1073/pnas.1422916112
https://doi.org/10.1073/pnas.1422916112
https://doi.org/10.1016/j.immuni.2012.12.006
https://doi.org/10.1016/j.immuni.2012.12.006
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1016/j.cell.2018.05.060
https://doi.org/10.1016/j.cell.2018.05.060
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1182/blood-2012-08-449306
https://doi.org/10.1182/blood-2012-08-449306
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1016/j.mam.2017.07.002
https://doi.org/10.1016/j.it.2017.04.002
https://doi.org/10.1016/j.it.2017.04.002
https://doi.org/10.1007/s10555-010-9223-6
https://doi.org/10.1007/s10555-010-9223-6
https://doi.org/10.1016/j.semcancer.2008.03.004
https://doi.org/10.4049/jimmunol.0803831
https://doi.org/10.4049/jimmunol.0803831
https://doi.org/10.1158/0008-5472.CAN-16-0359
https://doi.org/10.1158/0008-5472.CAN-16-0359
https://doi.org/10.1038/onc.2012.636
https://doi.org/10.1038/onc.2012.636
https://doi.org/10.1111/j.1755-148X.2011.00857.x


1 9insight.jci.org      https://doi.org/10.1172/jci.insight.126543

R E S E A R C H  A R T I C L E

2011;24(3):538–550.
	28.	Qin W, Ren Q, Liu T, Huang Y, Wang J. MicroRNA-155 is a novel suppressor of  ovarian cancer-initiating cells that targets 

CLDN1. FEBS Lett. 2013;587(9):1434–1439.
	29.	Cancer Genome Atlas Network. Genomic classification of  cutaneous melanoma. Cell. 2015;161(7):1681–1696.
	30.	Grohmann U, Bronte V. Control of  immune response by amino acid metabolism. Immunol Rev. 2010;236:243–264.
	31.	Casey SC, et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 2016;352(6282):227–231.
	32.	Ock CY, et al. Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers. Nat Commun. 

2017;8(1):1050.
	33.	Liberzon A. A description of  the Molecular Signatures Database (MSigDB) web site. Methods Mol Biol. 2014;1150:153–160.
	34.	Bhattacharya S, et al. ImmPort, toward repurposing of  open access immunological assay data for translational and clinical 

research. Sci Data. 2018;5:180015.
	35.	Iorio MV, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–7070.
	36.	Dickey LL, Worne CL, Glover JL, Lane TE, O’Connell RM. MicroRNA-155 enhances T cell trafficking and antiviral effec-

tor function in a model of  coronavirus-induced neurologic disease. J Neuroinflammation. 2016;13(1):240.
	37.	Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of  the MIR155 host gene in physiological and pathological pro-

cesses. Gene. 2013;532(1):1–12.
	38.	Lu LF, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. 

Immunity. 2009;30(1):80–91.
	39.	Alexander M, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 

2015;6:7321.
	40.	Cubillos-Ruiz JR, et al. Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective 

immunity against ovarian cancer. Cancer Res. 2012;72(7):1683–1693.
	41.	Sinha P, Parker KH, Horn L, Ostrand-Rosenberg S. Tumor-induced myeloid-derived suppressor cell function is independent 

of  IFN-γ and IL-4Rα. Eur J Immunol. 2012;42(8):2052–2059.
	42.	Mishalian I, Bayuh R, Levy L, Zolotarov L, Michaeli J, Fridlender ZG. Tumor-associated neutrophils (TAN) develop pro-tu-

morigenic properties during tumor progression. Cancer Immunol Immunother. 2013;62(11):1745–1756.
	43.	Le Mercier I, et al. Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment. 

Cancer Res. 2013;73(15):4629–4640.
	44.	Li B, Liu JS, Liu XS. Revisit linear regression-based deconvolution methods for tumor gene expression data. Genome Biol. 

2017;18(1):127.
	45.	Finotello F, Trajanoski Z. Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunoth-

er. 2018;67(7):1031–1040.
	46.	Schatton T, Scolyer RA, Thompson JF, Mihm MC. Tumor-infiltrating lymphocytes and their significance in melanoma prog-

nosis. Methods Mol Biol. 2014;1102:287–324.
	47.	Lyu GY, Yeh YH, Yeh YC, Wang YC. Mutation load estimation model as a predictor of  the response to cancer immunother-

apy. NPJ Genom Med. 2018;3:12.
	48.	Li B, et al. Comprehensive analyses of  tumor immunity: implications for cancer immunotherapy. Genome Biol. 

2016;17(1):174.
	49.	Thorsson V, et al. The immune landscape of  cancer. Immunity. 2018;48(4):812–830.e14.
	50.	Lee PP, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity. 

2001;15(5):763–774.
	51.	Sergushichev A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv. 

Published June 20, 2016. https://doi.org/10.1101/060012.
	52.	Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression 

profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–15550.
	53.	Colaprico A, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of  TCGA data. Nucleic Acids Res. 

2016;44(8):e71.
	54.	Silva TC, et al. TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages. F1000Res. 

2016;5:1542.
	55.	Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 

Res. 2015;43(7):e47. 

https://doi.org/10.1172/jci.insight.126543
https://doi.org/10.1111/j.1755-148X.2011.00857.x
https://doi.org/10.1016/j.febslet.2013.03.023
https://doi.org/10.1016/j.febslet.2013.03.023
https://doi.org/10.1016/j.cell.2015.05.044
https://doi.org/10.1111/j.1600-065X.2010.00915.x
https://doi.org/10.1126/science.aac9935
https://doi.org/10.1038/s41467-017-01018-0
https://doi.org/10.1038/s41467-017-01018-0
https://doi.org/10.1007/978-1-4939-0512-6_9
https://doi.org/10.1158/0008-5472.CAN-05-1783
https://doi.org/10.1186/s12974-016-0699-z
https://doi.org/10.1186/s12974-016-0699-z
https://doi.org/10.1016/j.gene.2012.12.009
https://doi.org/10.1016/j.gene.2012.12.009
https://doi.org/10.1016/j.immuni.2008.11.010
https://doi.org/10.1016/j.immuni.2008.11.010
https://doi.org/10.1158/0008-5472.CAN-11-3160
https://doi.org/10.1158/0008-5472.CAN-11-3160
https://doi.org/10.1002/eji.201142230
https://doi.org/10.1002/eji.201142230
https://doi.org/10.1007/s00262-013-1476-9
https://doi.org/10.1007/s00262-013-1476-9
https://doi.org/10.1158/0008-5472.CAN-12-3058
https://doi.org/10.1158/0008-5472.CAN-12-3058
https://doi.org/10.1186/s13059-017-1256-5
https://doi.org/10.1186/s13059-017-1256-5
https://doi.org/10.1007/s00262-018-2150-z
https://doi.org/10.1007/s00262-018-2150-z
https://doi.org/10.1007/978-1-62703-727-3_16
https://doi.org/10.1007/978-1-62703-727-3_16
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/S1074-7613(01)00227-8
https://doi.org/10.1016/S1074-7613(01)00227-8
https://doi.org/10.1101/060012
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007

	Graphical abstract

